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EFFECT OF AN APERTURE ON MEASUREMENT OF THE AXIAL 

DISTRIBUTION FUNCTION I N  A MAGNETICALLY 

CONFINED PLASMA 

by Roman  Krawec 

Lewis  Research  Center 

SUMMARY 

Theoretical  calculations  have  been  performed  to  determine  the  distortion  in  the 
axial velocity  distribution  when a magnetically  confined  plasma  passes  through  an 
aperture. A general  solution is obtained  in  terms of aperture  length  to  radius  ratio, 
transverse  to axial temperature  ratio,  and  normalized  length.  Results are shown for 
magnetic  field  strengths  ranging  from  zero to  infinity.  It is found  that  the use of strong 
magnetic  fields  allows  the  aperture to pas s  a plasma  sample  from  which  the  true axial 
distribution  function  may  be  obtained. 

The  effects of distortion  in  the axial velocity  distribution  on a measurement of axial 
temperature by taking  the  slope of the  natural  logarithm of current  versus  voltage is also 
discussed.  It is shown  that  the error   in   such a measurement  can  generally  be  kept  below 
30. 5 percent. 

INTRODUCTION 

The  usual  methods of finding  the axial energy  distribution of particles  within a mag- 
netically  confined  plasma  consist of allowing a small  sample of the  plasma  to  pass 
through an  aperture  and  performing  an  energy  analysis  on  the  resulting  low-density 
plasma.  This  energy  analysis  may  be  done  by  using  electrostatic  fields  alone (refs. 1 
and 2) o r  by  means of a combination of electric  and  magnetic  fields  (refs. 3 and 4). The 
aperture  may be placed at the  end of a mirror  machine  (refs. 1 and 4), may  be  attached 
to  the body of a probe  which is placed  into  the  plasma  (ref. 2), or  can  consist of a mag- 
netically  shielded  duct  (ref. 3) so that  the  particles are extracted  transverse  to  the 
magnetic  field. 



Analytical  solutions of the  change in the  distribution  function of particles  passing 
through  the  aperture  have  generally  been  restricted  to  treating  the  particles as having 
rectilinear  motion (refs. 1 and 2), in  which case the  effects of the  magnetic  field are 
considered  negligible.  Another  method,  which  also  neglects  magnetic fields, has  been 
to  consider  the  aperture as a boundary  separating two regions of different  electric  field 
strength  and  then  determining  what effect these  fields  have  on  the  distribution  function 
(refs. 3 and 5). 

One  exception is a recent  paper by Anderson,  Eggleton,  and  Keesing  (ref.  6), who 
treat the  case of a point  source of plasma  in a magnetic  field  and  show  that  the  particle 
distribution is strongly  affected  when  the  plasma  passes  through  an  infinitely  thin  aperture. 

I t  is the  purpose of this  report  to  extend  the  calculations of Anderson,  Eggleton, 
and  Keesing  to  the  case of a uniformly  distributed,  magnetically  confined  plasma  with 
anisotropic  velocity  distribution  which is allowed  to  pass  through  apertures of arbi t rary 
length  and  diameter.  The  general  method of solution is followed by applications  to 
apertures of specific  length  and  diameter.  These  solutions are then  used  to  propose 
cri teria  for  aperture  design  which  will   give  minimum  distortion  in  the axial distribution 
function. 

Formulation of Problem 

Consider a flat plate of thickness  L  immersed  in a uniform  magnetic  field  which is 
normal  to its surface.  Let  the  region  to  one  side of this  plate  contain a plasma of known 
velocity  distribution  and  the  other  side  be  evacuated.  The  plate is considered  to  contain 
a cylindrical  aperture of radius R through  which a portion of the  plasma  may flow. The 
situation  to  be  considered is depicted  in  figure 1. 

The  primary  goal of this  report  is to  find  the axial velocity  distribution of the  parti- 
cles  emerging  from  the  aperture  while a secondary  goal is to  determine  whether  an 
accurate  measurement of axial plasma  temperature  can be obtained at the  aperture  exit. 
The  variables to be  considered are the  aperture  dimensions,  the  magnetic  field  strength, 
and  the axial and  transverse  particle  temperatures.  The  following  assumptions are made: 

the 
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(1) Any particle  striking  the  bounding  surfaces of the  aperture is absorbed. 
(2) The  plasma is collisionless;  that is, the  mean free path is large  compared  with 

aperture  dimensions. 
(3) The  regions  under  consideration are free of electrostatic  fields. 
(4) Particle absorption at the  walls is the  only  loss  mechanism. 
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Figure 1. - Schematic of situation to be analyzed. 

Because of the presence of a magnetic  field,  the  charged  particle  trajectories are 
helices  spiraling  around  the  magnetic  lines of force. It is therefore  convenient  to re-  
solve  this  helical  motion  into a circular  motion  about  the  particles'  guiding  center  super- 
imposed  on  the  motion of the  guiding  center  along  the  direction of the  magnetic  field. 
This  direction is taken as the  z-axis.  In  the  remainder of this  report,  the  term  particle 
orbit, o r  simply  orbit,  will  denote  only  this  circular  motion  projected  on  the  entrance 
plane. 

While  the  final  objective is to  calculate  the  number of particles  emerging  from  the 
aperture   per  unit time  with axial velocities  between  vz  and  vz + dvZ,  the  analysis  will 
first separate  the  particles  into two c l a s ses  depending  on  whether  the  gyroradius is l e s s  
than o r  greater  than R, A transmission  function  for  the  flow of particles  through  the 
aperture  will  be  calculated as a function of gyroradius  and axial velocity  for  each  class 
and  the  results  will  then  be  combined  to  compute a distribution  function  for  the  particles 
emerging  f rom  the  aper ture   in   terms of the  initial  distribution  assumed. 

Particles  entering  the  plane of the  aperture  with  gyroradii  in  the  range 0 I r < R 
g 

are placed in class % while  particles  with  gyroradii  in  the range R 5 r < 03 are placed 
in  class II. Class  I particles  can  further  be  divided  depending  on  whether  their  orbits 
are wholly  within  (Class Ia) o r  partly  within  (Class Ib) the  aperture.   The  classes are 
summarized below. 

g 

. 

M R a n g e  on r Description 
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The  procedure  followed  herein  will be to  determine a transmission  function  which 
can  then be  multiplied by a velocity  distribution  function  and  integrated  to  obtain  the 
velocity  distribution  function at the  aperture exit o r  which  can be multiplied  by  the 
velocity  distribution  function  times the velocity  and  integrated  to  determine a particle 
flow a t  the  aperture exit. The   same  resu l t s  could be obtained  by  initially  treating  this as 
a flow problem  and  calculating  particle  flow  directly.  The  particular  approach  using a 
transmission  function  was  considered  more  useful. 

Consider a uniform  distribution of particles  with a given  gyroradius r The  loca- 
tion of the  guiding  centers of these  particles on the  x-y  plane  will  also be uniformly  dis- 
tributed.  Consider  the  particles  within a plane  slice of thickness  dz  such  that the s u r -  
face  density of their  guiding  centers is o. Now select   an area dA in  the  plane of the 
aperture  such  that  any  particle of gyroradius r whose  guiding  center lies within dA 
will  intersect  the  aperture  with  some o r  all of its orbit.  The  total  number of such  parti- 
cles will be odA. If the  length of the  particle  orbit  projecting  across  the  aperture is S, 
the  probability of that  particle  entering  the  aperture as it reaches  the  aperture  entrance 
plane is S/2rrr The  quantity aSdA/2rrr then  represents  the  total  number of particles 
with  gyroradii r which  enter  the  aperture.  Since  the  quantity S varies  throughout A, 
this  expression  must  be  integrated.  The  total  number of particles of gyroradii r which 
enter  the  aperture is thus o/27rr $S dA with  limits of integration  appropriate  to  the 
value of r being  considered.  This area will  be  either  circular o r  annular.  In  terms of 
the  radial   distance  from  the  center of the  aperture p ,  the  integral  becomes 

g' 

g 

g' g 
g 

g 
g 

!z 

The  limits of integration  in  this  expression  depend on the  class  to  which  the  particles 
have  been  assigned. 

If the  particles  belong  to  class I (r < R) g 

The  integral  whose  limits are 0 to R - r corresponds  to  particles  belonging  to  class Ia 
while  the  remaining  integral  corresponds  to  particles  belonging  to  class Ib. 

g 
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If the  particles  belong  to class II ( r  2 R) 
g 

Calculation of a Transmission  Function 

While  traversing  the  aperture  length L, each of the  particles  will  complete a number 
of orbits which  depend  on  the  strength of the  magnetic  field,  the  aperture  length,  and  the 
axial velocity of the  particle.  The  orbital  angle  through  which  each  particle  rotates 
while  traversing  the  aperture is given  by 

where all the  quantities  used are defined  in  appendix A. 
Therefore,  the  particles  will  travel  through  an  arc of length r 8 during  the  time  it g 

takes  to pass through  the  aperture.  Referring  to  figure 2, not all the  particles  which 
enter  the  aperture  along the a r c  S will  pass  through,  but  only  those  which  enter  the 
aper ture  on  that  portion of the  path  given  by S - or Consequently,  the  equations  cor- 
responding to equations (2) and (3) for  the  exit  plane of the  aperture  will  be  given  by 

g' 

for   c lass  I (r < R)  and 
g 

fo r   c l a s s  I1 (r L R). The  limits  have  been  changed  from  those  used  in  equations (2) 
and (3) to  insure  that  the  quantity S - or will  never  be  negative  since  negative  values of 

g 
g 
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Figure 2. - Schematic  depicting the  portion of 
its  orbit  (denoted by heavy line) that a 
particle must be on in order to pass through 
the  aperture. 

the  integrand  represent  those  particles  that  will  impinge  on  the  aperture walls. These 
limits  can  be  rigorously  specified  in  terms of r and  vz, as shown  in  appendix B. 

to 0 at  the  upper  limit if 8 were zero. For  any  given  value of 8, the  upper  limit is 
effectively  reduced.  The  integral  vanishes if B exceeds 217. 

g 
In  the first class (r < R),  the  integrand  would  range  from 217 at  the  lower  limit 

g 

In the  second class (r 2 R),  the  integrand is zero   a t  both  limits when 8 is zero. 
g 

The  effect of increasing 8 is to  shrink  both  limits  until  at  last  they  coalesce. 

number of particles  which  will  arrive  at  the  aperture  entrance  should  be mR2, a trans- 
mission  function  for  the  aperture  can  be  defined by  dividing  the  expressions  given by 
equations (5) and (6)  by ( m R  ) (see  appendix C ) .  This  results  in 

Since for any  value of r the  uniformity of spatial  distribution  implies  that  the  total 
g' 

2 

6 5 

In  order to carry  the  calculations  any  further,  we  need  the  relation  between S, p ,  
and r Referring  to  figure 3, 

g' 
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Figure 3. - Schematic  representation of rela- 
tion between S, p, and rg. 

The law of cosines  gives 

p + r2 - R ~  2 
cos 'p = g 

2  2rgP 

from  which 

where 

1 
2 r  al = " 
g 

(R2 - rg) 2 
a2 = 

2r  g 

Hence, if we  momentarily  neglect  the  limits,  the  problem of finding a closed  form 
expression  for  the  transmission  function  consists of evaluating an  integral  of the  form 
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As shown  in  appendix C, the  closed form expression for this  integral  is given  by 
/ 

cos - l  Clp - :) - =+ 2 1 + 4a1a2 -1 2alp - 1 - 2a1a2 

2 4 a ~  2 s in  ( d K  ) 

Hence,  the  transmission  function  becomes 

Using  such a transmission  function, it is then  simple to take a known  velocity dis- 
tribution, fo r  example, a two-temperature  Maxwellian,  and  determine  its  shape  at  the 
exit of the  aperture. 

Veloci ty  Distr ibut ion at Aperture  Exit  

Let  the  particles  in  the  bulk  plasma  have a velocity  distribution  function  given by 

m(vx+v 2 2  )/2kT,  -mvZ/2kTZ 2 
F.(v , V   , V  Y e ( 1 5 4  1 x  y z 

1/2 -mvl/2kTl 2 -mvZ/2kTZ 2 
F.(v  ,vZ) = - ___ 1 1  

kT, "Om (2lT.) e 
e 

8 



The  axial  velocity  distribution  ahead of the  aperture is then  given  by 

1/2  -mv,/2kTz  2  -mvl/2kTl 2 
F.(v ) = - - 
1 2  YT; (2gT$ e v 1 dv, 

0 

1/2  -mvZ/2kT, 2 -mvZ/2kT  2 , 
= A1 e 

The  corresponding  expression for the exit of the  aperture is 

Current at Aperture  Exit 

The  arr ival   ra te  of particles at the  aperture  entrance  gives rise to a current  which 
can  be  expressed as 

-mvZ/2kTz  2 
dIi(vz) = ITR 2 qA1 e vz dvZ 

At  the  aperture  exit,  the  corresponding  expression is 

If i t   were not for  the effect of the  aperture,  the  current  could be analyzed  in  terms of 
some  retarding  potential  which  cuts off particles  having  velocities less than vma= 2qV/m. 

9 



In this case equation (18) can be expressed as 

2 -mvZ/2kTZ  2 
I.(v > vmax) = TR qA1 1 z  vz dvZ 

T, 

" max 

The  maximum  current  density  occurs  when  V = 

exponential  in  equation  (20). 

e 

0 and is 

I.(v 1 2  > vmax) = Imax exp 

From  which 

= In Imax - In  I.(v > vmz) 
kTz 

1 2  

just  the  term  in  front of the 

(2 1) 

Equation (22b) is the  widely  used  relation  which  permits T, to  be  determined  from 
the  slope of a retarding-potential  curve.  The  question arises as to  whether  this  same 
procedure is applicable  to  the  aperture exit. Unfortunately, a closed-form  integration 
is not  possible  for  this  case.  One is required  to  resort  to  numerical  methods  to  obtain 
a set of retarding  potential  curves  for a range of values of R, L, T,, TZ,  and B. It 
appears  possible  to  condense  the  requirements by a normalization  process.  Suppose we 
normalize  velocities  in  terms of their   average  values,   the  aperture  radius  in  terms of 
an  average  gyroradius,  and  aperture  length  in  terms of the  distance  that a particle of 
average axial velocity  will  travel  while  completing  one  cyclotron  orbit.  This  leads  to 
the  following  normalized  parameters: 

10 



2a)/2mkTz 

It was also found  convenient  to  normalize r and p as follows: 
g 

N p = P  
R 

This  permits  rewriting  the  equations  in  the  form 

"max 
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(Fg 2 1) 

N 

V max 
Z 

The  limits of integration  on p can be expressed as 

p2u N = N rg cos (:) +,/I - F: s in  2 8  (;) 

The  following  relations are useful: 

N 

The  use of relations (27) allows the expressions  for  current  and  the  distribution 
function to be set up for  computer  integration  for a range of values of L, Tz/T, and 
L/R. 

N 
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Special  Case B = 0 

At  first  glance, it might  appear  that  the  case B = 0 is treated by  simply  examining 
equations (25) to (27) in  the  limit as B goes  to  zero.  This,  however,  can lead to 
erroneous  conclusions  because of the extensive  manipulation  involving  quantities  which 
either  go  to  zero or  become unbounded  when  the  magnetic field is set equal  to  zero. 

We thus  proceed  to  rederive  the  problem  for  the  case  when  the  magnetic field is 
absent.  The  similarities to the  case when a magnetic field is present  will be pointed 
out as they arise. 

A  particle  with axial .velocity  vz  will  traverse the aperture  length  in a time T 

given  by 

L T =  - 
vZ 

During  this  time,  the  particle  will  also  travel a transverse  distance 6, given  by 

Note that the  quantity 6 corresponds to  the a r c  length r 0 for the  case B # 0 and, g 
in fact, is identical  to it in  value. 

of a circle of radius 6 .  This  circle  defines  the  possible  positions  that  every  particle 
of velocities  vz  and  vI  can  have after traversing  an axial distance L. (The  initial 
position of the  particle  plays the ro le  of the guiding  center  for  the  previously  treated 
case,  while  the  circle  which  defines  the  location of a particle at the  aperture  exit   cor- 
responds  to  the  particle  orbit. ) Following  the  procedure  established  previously,  we  ask 
what  portion of this  circle of radius 6 lies  within  the  aperture. The entering  particles 
are again  broken up into two major  classes  depending on the value of 6, which a r e  
summarized as follows: 

Suppose  the  position of the  particle as it enters  the  aperture is taken as the  center 

Class  Circle of radius 6 Flange on 6 

Ia 

Lies partly within the aperture R 5 6 5 2R II 

Lies partly within the  aperture 0 5 6 < R lb 

Lies completely within the  aperture 0 5 6 < R 

13 



(a) Class Ia; all  particles  enter. (b) Class  Ib; d2x enter. 

(c) Class 11; d2n enter. 

Figure 4. - Representation of the  fract ion of particles in each  class 
capable of leaving the  aperture  for  the case B = 0. 

Referring  to  figure 4, the  fractions of particles  capable of leaving  the  aperture are 
given  by 

Class Fraction 

A transmission  function  (similar to eq. (7)) can now be  defined  for  the  zero  field  case 
and is given by 

14 



where (0 I 6 < R) 

where (R 5 6 I 2R). The  integral  in  equation (30b) is s imi la r  to one  previously  used  and 
.can  be  expressed  in  closed  form.  This  gives 

where (0 5 5 < 1). 

where (1 5 5 5 2) and 

Thus, if  0 5 5 5 2 

The axial distribution  function at the  exit  plane  may now be  writ ten as 



I l l  I1 1 l l111l l11 l1 l1 l111111l1~1111l111111l l11111 

where 

Y =  2 f i R y z f i  L 

The  current-voltage  characteristic is then  found in  the  usual  manner. 

Limi t  as Magnet ic  Field  Approaches  Inf in i ty 

The  limiting  case of arbitrarily  large  magnetic  fields  may  be  treated by  noting  that 
the  orbital  angle 0 always  becomes  greater  than its maximum  permissible  value of 2n 
and  the  gyroradius  goes  to  zero as the  magnetic  field  approaches  infinity. An examination 
of equations (25c) and  (26a)  reveals  that  the  transmission  function is identically  equal  to 
1, in  which case 

B-0 

1/2 -7; 
= n o  (e) e 

This  equation is immediately  recognizable as the  axial  distribution  function at the 
entrance  plane of the  aperture.  This is as it should be  since  the  gyroradii of all particles 
are zero,  and  therefore  the  particle  motion is purely  along  the  magnetic  field  lines.  Thus 
every  particle  that  enters  the  aperture  will  reach  the  exit  plane. 

RESULTS AND  DISCUSSION 

Equation  (25b)  was  set  up  for  machine  integration  in  terms of the  normalized  radius 
R,  the  length  to  radius  ratio L/R, and  the  transverse  to axial temperature  ratio T,/T,. 
N 
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The  parameters  L/R and TI/TZ 'were  varied  between  values of 0.1 and 10, and fll 
was  varied  over a sufficient  range so that  the  curves  approached  the  values  taken  on at 
B = 0 and B - w. The case B = 0 (eq.  (34)) was  also  calculated,  the  parameter of interest  
being (L/R) d q z .  

The  computer  programs  used  to  perform  the  calculations are included  in  appendix D. 
The  distribution  functions  were  normalized  by  dividing  through  by  the  factor 

no,/-, and  some  typical  results are presented  in  figure 5. 

equivalent  to  changing  the  magnetic field since R is directly  proportional  to  the  strength 
of the  magnetic field. Specifically 

The effects of changing  the  normalized  radius are presented  in  figure 5(a); this is 
N 

R =  420 Oo0 R (electrons) 
T:/2 

- 9 800 B R - (protons) 

where B is given  in tesla, R  in  meters,  and T, in  electron  volts. 

B - 03 case when R >> 10 and lies near  the B = 0 case when << 1.0. In general, a 
large  value of fi means  that   the  aperture is much  larger  than  the  radius of gyration of 
most of the  particles  (strong field case),  and  thus  the  distribution  function  will  remain 
relatively  undisturbed. A small  value of implies  that  the  motion of the  particles 
will  be  nearly  rectilinear as they pass  through  the  aperture  (weak  field  case). In this 
case,  the  distribution  function  will  take  on  the  characteristics of the B = 0 case. 

Looking fur ther   a t   f igure 5(a)  indicates  that  the  distribution  function lies near  the 
N 

Figures 5(b) and  (c)  give  the  results of changing Tl/TZ and L/R. The  rather 

Further  insight  into  the  effects of varying  either  the  length  to  radius or  the  tempera- 
complex effects obtained  by  varying  either of these  parameters are clearly  indicated. 

ture  ratio  may be gained  by  looking at some  limiting  cases of B = 0. These are p re -  
sented  in  figure 6 for  various  values of the  combined  parameter (L/R))/Tl/TZ. For a 
given  value of this  combined  parameter  the  distribution  function for nonzero  magnetic 
fields  will fall between  the  curve  for (L/R) d m  equal  to  zero  and  the  curve  cor- 
responding  to  the  given  value of this  combined  parameter. 

As previously  mentioned,  the  distribution  function  for  large  values of magnetic  field 
will be unchanged  from  that at the  aperture  entrance.  Noting first the  case 
(L/R) im = 0. 1, it is clear that  this  curve lies quite  close  to  the  undisturbed  distri- 
bution  function  for  most  values of the  dimensionless axial energy  and  departs  from it 
only near  the  origin.  (The  case (L/R) fm = 0 is the  undisturbed  distribution  function. 
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.004 . O 1 ~  0 . 5  1.0 1.5 2.0 2.5 

Dimensionless  axial  energy,  cZlkTz 

(a)  Effect of varying  the  magnetic  field  (normal- 
ized  radius).  Length  to  radius  ratio, 2.0; 
temperature  ratio, 1.0. 

0 .5 1.0 1.5 2.0 2.5 
Dimensionless  axial  energy, cZ/kTz 

(b) Effect  of  varying  the  transverse to axial  temper- 
a ture ratio.  Length to radius ratio, 2.0; normal- 
ized  aperture  radius, 0.889. 

(C) Effect of  changing  the  length to radius  ratio. 
Temperature  ratio, 1.0; normalized  aperture 
radius, 0.869. 

perature ratio,  and the length to radius ratio. 
Figure 5. -Typical  distribution  functions  at  the  aperture  exit  showing  the  effects of varying  the  magnetic field, the tem- 
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0 1 2 3 4 5 
Dimensionless  axial  energy, .=,/kTz 

Figure 6. -Change in normalized  distribution 
function  due  to  variation  of  combined  para- 
meter L / R m  for  the case B = 0. 

This is also  the  limiting case as the  magnetic  field  approaches  infinity  for all values of 
L/R  and Tl/TZ since particles move  parallel  to  the B -field  in  this  case. ) Looking at 
the  other  curves  shows  that  increasing  either  L/R o r  Tl/Tz  has two effects 

undisturbed  case. 
(1) The  curve  representing  the  distribution  function  moves  further  away  from  the 

(2) The  portion of the  curve  which is nonlinear on a semilogarithmic  plot  occupies a 
larger  range of values of dimensionless  energy. 

The  most  severe  region of distortion is always  near  the  origin  and is a maximum  for 
large  values of TI/TZ. All  the  distribution  functions  shown  will  reach a region of con- 
stant  slope  for  sufficiently  large  values of the  normalized axial energy,  where a true 
temperature  may  be  measured.  This  region  may  never  be  reached  in  practice.  The 
maximum  value of the  normalized  energy  reached  will  depend not  only on the  initial 
particle  current  available  but  also on how quiescent  the  plasma  in  question is. Generally, 
it may not always  be  practical  to  measure a current  versus  voltage  curve  over a range of 
variation of current  greater  than 100. Taking  these  restrictions  into  account,  tempera- 
tures  were  evaluated  by  drawing a best  fit straight  line  through  the  logarithmic  current 
versus  voltage  curve  (on a plot of the  distribution  function  such as fig. 6) in  the  region 
of normalized  energy  from 4 to 5 and  using its slope  to  determine a temperature.  Using 
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Figure 7. - Effect of t he  combined  para- 
meter L I R V  o n  measured  axial 

temperature. h i n e t i c  field  strength, 0. 

a range of values of normalized  energy  closer to zero  will  give rise to greater e r ro r s   i n  
temperature  measurement,  while  moving  the  region  further  away  from  zero  will  give rise 
to   smal le r   e r rors .  

Figure 7, shows the ra t io  of the  temperature  that  will be indicated  by a measurement 
to  actual  temperature  for B = 0. The  indications  are  that  the  measured  temperatures 
will be too large  unless L/R is restricted  to  values less than 0.1. The  measured  tem- 
peratures  depart   more  and  more as L/R is increased,  reaching a maximum  value of 
1.305 t imes the actual  temperature.  Continued  increases  in  L/R  have no further  effect 
on this measured  temperature.  

The  variation of measured  temperature  with  magnetic field (normalized  radius) is 
the subject of figure 8.  It is clear that increasing  L/R has the effect of bringing  the 
point  where  the  measured  temperature is equal  to  the  true  temperature  nearer to the 

Length  to 
radius 

1.2 tx 5 
lo ”- 

Figure 8. - Effect of normalized  radius on- a measurement 
of  axial  temperature.  (The  parameter R is  directly 
proportional  to  the  strength of the magnetic  field. ) 
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- 
origin.  This  indicates  that  comparatively  small  values of magnetic  field  will  be  effective 
in  obtaining  an  undistorted  value of the  temperature  for  large  values of L/R. 

The  preceeding  discussion  gives  preliminary  criteria  for  aperture  design (i.e., either 
L/R must   be  small  or  the  magnetic  field  must be chosen so that  the  aperture is operated 
in  the  strong  field  region). 

In  either  case, it is not considered good practice  to  make  the  radius of the  entrance 
apertures  larger  than  the Debye  length of a particle  within  the  plasma.  To  establish  an 
upper  limit  to  collector  current,  consider  an  aperture  with  radius  equal  to a Debye  length. 
The  collected  current is 

I = q -  nvav  nR2 
4 

where vav is the  average axial velocity. With R equal  to  the  Debye  length,  aperture 
current  is found  to  be  independent of density  and is 

I = 6.58 TZpA (39) 

for  electrons when the  axial  temperature is given  in  electron  volts. 
An aperture  which is built  following  these  suggested  criteria  should  yield a plasma 

efflux  that  truely  represents  the  distribution  function. 

SUMMARY OF RESULTS 

Expected  changes  in  the axial distribution of velocities  have  been  calculated for  a 
collisionless  plasma  immersed  in a magnetic  field  when  such a plasma is allowed  to  flow 
through  an  aperture of finite  length  and  diameter.  The  velocity  distribution at the  aper- 
ture  exit  was  obtained  in  terms of the  length  to  radius  ratio of the  aperture,   the  trans- 
verse  to axial temperature  ratio,  and  the  normalized  aperture  length. 

The  distribution  functions  for  selected  values of the  above  parameters  were  pre- 
sented  along  with  the  weak  and  strong  magnetic  field  limits.  The  ratio of aperture  length 
to  radius  and  the  ratio of t ransverse  to  axial temperature  were  varied  from 0.1 to 10.0, 
while  the  magnetic  field  was  varied  from  zero  to  infinity.  The  following  results  were 
noted: 

1. For very  strong  magnetic  fields,  the  distribution  function  remains  undistorted re- 
gard less  of the  values of the  other  parameters.  
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2. Minimum  distortion  in  the  case of weak or intermediate  values Of magnetic  field 
occurs  when  the  aperture  length to radius  ratio is very  much less than one. 

3. The  maximum  ratio of temperature  indicated at the  aper ture  exit to  that at the 
aperture  entrance  was 1.305. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  January 6, 1970, 
129  -02. 
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APPENDIX  A 

SYMBOLS 

*1 

dA 

"1 

a2 
B 
N 

constant,  defined  in 
eq. (16) 

element of area 

defined  in eq. (1   l a )  

defined  in eq. ( l l b )  

magnetic  field  strength 

normalized axial velocity 
distribution  function  at 
aperture  exit 

Fi(vx, v  v ) velocity  distribution  func- 
Y' z 

tion at aperture  
entrance 

F i ( V z )  axial velocity  distribution 
function a t   aper ture  
entrance 

Fi(V19 Vz)front velocity  distribution  func - 
tion at aperture  
entrance 

axial velocity  distribution 
function at aperture  
exit (B = 0) 

integral,  defined  in 
eq. (12) 

.integral,  defined  in 
eq. (25e) 

current at aperture  
exit 

current at aperture  
entrance 

Imax 

k 

L 

L 
N 

m 

N 

S 

TZ 

current at aperture  en- 
trance  due  to  particles 
whose axial velocities 
are greater  than vmaX 

maximum  current  at 
aperture  entrance 

Boltzmann  constant 

aperture  length 

normalized  aperture 
length 

particle  mass 

total  number of particles 
of gyroradius r en- 
tering  aperture 

g 

particle  number  density 

electronic  charge 

aperture  radius 

normalized  aperture 
radius 

gyroradius 

normalized  gyroradius 

length of particle  orbit  in- 
tersecting  the  aperture 

axial temperature 

T, transverse  temperature 

V retarding  potential 

vX 
component of velocity 

along x -axis 
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V 
Y 

vZ 

N 

vZ 

N 

Y 

6 

rl 

17 
N 

8 

5 

component of velocity 
along y-axis 

component of velocity 
along  z -axis 

normalized axial velocity 

transverse  velocity 

normalized  transverse 
velocity 

constant,  defined  in 
eq. (35) 

P 

N 

P 

p1 

PO 

transverse  distance 
particle  travels  while 
traversing  the  aperture  Plu 
length (B = 0) N 

N 

transmission  function 

normalized  transmission 

p2u 
(5 

function 
7 

transmission  function 
(B = 0) 

orbital  angle 

normalized  distance 
cp 

distance  from  center of 
aperture  to guiding 
center of particle 

normalized  distance from 
center of aperture  to 
guiding  center of 
particle 

lower  limit, eq. (26c) 

distance  from  center of 
aperture  to guiding 
center of particle 
(B = 0) 

upper  limit, eq. (26a) 

upper  limit, eq. (26b) 

surface  density of guid- 
ing  centers 

time  needed  for  particle 
to  traverse  the  aper- 
ture length 

angle  defined  in  fig. 3 
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APPENDIX B 

LIMITS OF INTEGRATION 

Upper and Lower  Limits  for Class I1 Part ic les 

Figure 9 shows  the  upper  and  lower  limits  on  p for a typical  class II particle at 
various  values of 8. As previously  mentioned,  particles  with p > p, o r  p < p2 will 
make  the  integrand (S - r e) negative,  and are thus  absorbed  by  the  aperture  wall.  Refer- 
ring  to  figure 10 and  applying  the  law of cosines  gives 

g 

r2 + p:, - R 2 
cos = g 

\ 21 2rgPu, 2 

Figure 9. - Upper and  lower  limits  for  typical  class I1 particle as function of orbital angle. 

(a)  Upper l imit. (b) Lower l imit. 

Figure 10. - Upper and  lower  l imits  on  distance  from  center of aperture 
to guiding  center of particle  for  class I1 particles. 
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Solving  equation (Bl) for p  and  using  the  notation  that  has  been  used  in this report  
result in 

UY 2 

The  upper  and  lower  limits  coalesce  when 

This  implies  that  the  integral  vanishes  for  values of 0 or r such  that 
g 

Upper  Limit  of  Integration  for  Class Ib Part icles 

The  upper  limit of integration on p for  typical  class Ib particles  at  various  values 
of 8 are shown  in  figure 11. The  upper  limit is obtained  in  the  same  manner as the 
limits  were  obtained  for  class I1 particles  and is given  by 

(d) 8 = 7d2. (e) e = 0; pu = R + Rg. 

Figure 11. - Upper l imi t   on  d istance  f rom  center of aperture  to  guiding  center 
of  particle p for  typical  class I b  particle  at  various  values of orbital  angle 8. 
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APPENDIX  C 

INTEGRATION OF THE TRANSMISSION FUNCTION 

Integrat ion of Equation (12) 

It was  previously  noted  that  the  problem of finding a closed  form  expression for the 
transmission  function  consists  in  evaluating  an  integral of the  form 

Consider  the  equivalent  expression for the  integral  in  equation  (Cl): 

I' = s* x cos-'  u dx 
a 

Integrating by parts converts  this  equation  to 

X 2 I b  + f 
x2 du I' = - cos- l  u 

2 
la 

Hence,  the  original  integral  becomes 

3 

" OP2 
2 

a 

b 

a 

b 

f l  + ;) P2dP 

[1 - (alp - 3 2 ]  

1/2 
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I , .... 

Concerning  ourselves  with  the  remaining  integral 

b 
(alp2 + a2) P dP 

1 
2 

- ” Lb2 a 

(alv + a2) dv 

b2 

(C 5) 

a a 2 

where 

2 v =  p 

2 2  V = -alv + (1 + 2a1a2)v - a2 2 

And finally 
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Integration of Equations (5) and (6) for the Case e = 0 

In deriving  the  transmission  function,  the  statement  was  made that the  number of 
particles incident  on  the  aperture  was  represented  by anR2, independent of the  value of 
the  gyroradius.  The proof follows. 

Taking  the  case  with r less  than R, equation (5) may be written as 
g 

= on(R - r ) + 01 2 
*thru g 

Substituting  the  value of I given  in  equation (C7) 

Substituting  the  values of al and a2 into  equation (C9) one  obtains 
r 

2 = (TAR 



I I I 1  I l1l1111111l11l1111111111lllllll I1l11ll1 I Ill1 Ill111 ~ll1ll11111 Ill 

F o r  the case  where r is greater than R, equation (6) becomes 
g 

Rg+R 
Nthru - -R - 

g 

Thus  for  both  ranges of r the total  number of particles  impinging  on  the  front  sur- 
g' 

face of the  aperture  comes out  the  expected  value of aaR2 even  when  expressed  in this 
complex  form. 
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APPENDIX  D 

COMPUTER  PROGRAMS 

The  programs  that  follow are written  in  standard  FORTRAN IV language  and  do not 
require  any  special  functions  other  than  those  normally  supplied. 

zero  magnetic field case  (APERTO) is given  in  figure 12. 

Start ) 

headings 
Print 

I 

+ 
Initialize 
program 

I 

Tl'T, 
Read UR 

Calculate V,, 
Y 

FtQV). LIR. TJTz 
Write QV, 

Figure 12 - Flow diagram - program APERTO. 

This  program  varies  the 
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normalized axial energy  (denoted  by  QV  within the program)  from 0 to 5 in steps of 0 . 1  
and  computes the aperture  exit distribution  function (eq. (34)) for  each  value of QV. 
The  integration  over the transverse  distribution  function is performed  by  subroutine 
SIMSN, which is a straightforward  Simpson's 1/3 rule  numerical  integration. Although 
the limits are supposed  to  vary  from 0 to 00, the upper  limit is arbi t rar i ly   res t r ic ted 
to a maximum  value of 5 (exp(-25) is af te r  all a rather  small   number).  

A flow  diagram  for  subroutine SIMSN is given  in  figure 13. This subroutine is de- 
signed to repeatedly  double  the  number of steps used in  the integration  until two succes- 
sive  values of the  integral   agree to within a specified  number of digits. 

Calculate 
permitted  error 

ANS = h (yo + yn t 4 odd + 2  even) 
3 

Calculate 
step size 

1 
lnitialze 
program 

4 

+ Odd y 1  t y3 + . . . + yn-l  

Even = y2 + y4 +. . . + yn-2 

Yes 

I K = K + 1  I I K = K + I ]  4 A N S l  = ANSZI 
1 

1 I 
Calculate 

ANSZ 

Calculate  ANSI 

Double number 
of steos 

Calculate 

Calculate 

of steps 

Calculate 

Yes 

SIMSN = ANSZ 

Figure 13. - Flow diagram - 

32 



The complete program listings follow. 

C 
C COMPUTATION  OF  THE  O ISTRIBUTION  FUNCTION  FOR  THE  EFFECT  OF  AN 
C APERTURE OH A  TU0  TEMPERATURE  MAXYELLIAN  LIISTRIBUTION  YHtN B=O. 

C 
C 

C 

C 

KK =O 

c PRINT our HEADINGS. 

610 FORMAT1  IH1.1OX.ZBHEFFECT OF APERTURE  YHEN B = O . / / /  J 
10 W l T E l b t 6 l O )  

UR I T E l 6 . 6 0 0  1 
600 F O M M A T t l H  .lOX.ZHOV.6X.9HDIST. FN. tbX.3HL/R.6X.SHTP/TZ// /J 

C 
C I N I T I A L I Z E  PROGRAM AN0  SUPPLY  REOUIREO  CUNSTANTS. 
C 

COMMON GAMA .P I 
P I = 3 . 1 4 1 5 9 3  

C 
C SUPPLY  INPUT  DATA. 
C 
C  XLR I S  THE APERTURE  LENGTH TO RADIUS  RATIO.  
C TPZ IS THE  TRANSVERSE TO A X I A L  TEMPERATURE  RATIO. 
C 

500 FORMAClZF10.3)  
R E A D I ~ . S O O J X L R I T P ~  

C 
C END  OF INPUT  DATA.  START OF C A L C U L A T I O N  OF O l S T R I B U T I O N  
C FUNCTION. 
C 

21 0 

22 0 

200 

605 
30 0 

D I M E N S I O N   D I S T F N l  4 1 )  .OVV( 5 1 )  
DD 200 J=A. 51 
XJ=J- 1 
OV=XJ / LO. 
OVV(J1=OV 
VZ =SORT1  OV  1 
GAMA=2,828428*VZ/1 SOH14 TPZ)*XLRJ  
i F l G A M A  .EO. 0.01 G O  TO 210 
GO TI2 7.20 
D I S T F N I J I = O - O  
GO TO 200 
A=EXP 1-0 V I 

EXTERNAL ARG 
I F l A  Ai- 1.0 E-301 A=O.O 

0 I F F = O  -0 

I F l G A H A  .CT-  5.) B ~ S l M S N ( O . O . 5 . . 4 . A R G I D I F F )  
IFLGAMA  -LE.  5.1 B = S l H S N l O ~ O . G A M A ~ 4 . A R G . D I F F )  

I F ~ B  .LT. 1-0 E-301 n=o.o 
O I S T F N l J J = A * B  
CONT I NU€ 
W 300 N =  1.51  
Y R l T E l b ~ b 0 5 1 O V V l N I ~ U l S T F N ~ N J ~ X ~ R ~ T P Z  
FORMAT( I H  .F13.2.E15.4.2F10-2J 
CONTINUE 
K K = K K + l  
I F l K K  .LT.  991 GO TU 10 

END 
srop 

S I B F T C   S U B 1  

C 

C 
C T H I S   F U N C T I O N  AS THE TRANSVERSE O I S T R I B U I I O N   F U N C T I O N  T I M E S  ETA. 

F U N C T I O N   A R G I Y )  
COWMDN GAMA.PI 
X=2.*Y/CAMA 
E T A = l Z ~ * A I I C O S l X / 2 . J - X * S O R ~ I l . - . 2 5 + X + X ~ J / P 1  
ARG=Y*ETA+EWI-Y*V/2.   J  
RETURN 
END 

M LO 

W 30 
W 50 

n 20 

w 60 
n 70 
n BO 
n 90 
n 100 
M 102 
M 104 
M 110 
M 120 
I4 130 
M 140 
Y 150 

M 170 
M 180 

Y 200 
M 190 

M 210 
M 220 
M 2 3 0  
M 240 

M 260 
M 250  

n 280 
M 270 

M 290 
M 310 

M 330 
I4 340 
M 3 5 0  
M 3 6 0  
M 365 

M 367 
M 368 
M 369 
M 370 
M 380  
M 3 9 0  
M 3 9 5  
M 400 
M 405 
t4 410 
M 420 
M 430 
M 470 

M 5 9 0  
M 5 0 0  

M 610 

M 620 
M 630 
n 640 

n 160 

n 320 

n 366 

w 615 

A 10 
A 20 

A 40 
A 30 

A 50 
A 55 
A 60 
A 7 0  
A 80 
A 90 
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C 
C 

C 

C 
C 

C 
C 

C 
C 

C 
C 
C 
C 
C 
C 

FUNCTION  S IMSNIA.BsN.FN.DIFF1 

A I S  THE L J Y E R  L I M I T .  B THE UPPER L l M l T  s N  G IVES  THE NUMBER 
S I G N I F I C A N T  FIGURES THE  ANSWEK  CAN dE EXPECTED  TO t)E CORKECT 

COMPUTE0  VALUES  OF  THE  INTEGRAL. 
AN0  1OO*DIFF I S  THE PERCENT  DIFFERENCE  BETUEEN  THE  LAST T J O  

THE C A L L   S E O U E U E  IS 

SIMPSON 1/3 RULE  INTEGRATION. 

EXTERNAL F N  
DIFF=O.O 
~ S ~ S I H S N l A ~ B . N . F N . D I F F )  

200 
LOO 

300 

40 0 

50 0 

550  

60 0 

100 

F U N C T I O N ,   S l M S N l A . B * N . F N ~ D I F F J  
EXTEKNAL  FN 
K= 0 
W=10. 
EKKOR=1. 

ERUOU =ERROR /lo. 
W 100 JZ1.N 

H = l B - A ) / H N  

ODD=O.O 
EVEN=O.O 

N A = W - l .  
N B = m - 2 .  
M 300 KA=1.NA.2 
XKA=KA 
X=A+XKA*H 
ODD=OOO+FN 1 X 1 
DO 400 KB=2.NB12 
XKB-KB 
X=A+XKB*H 
E V E N = E V E N + F N l X l  

K = K + 1  
I F l K  -CT. 0 1  GO  TO 5 0 0  

A N S l = H * ( F N l A ~ + F N ( B 1 + 4 . * 0 ~ ~ + 2 .  *EVENJ /3. 

GO TO 200 
HN=z.*HY 

I F l K  ,GT. 11 GO TO 600 
K = K + 1  
ANS2=H*lFNlA~+FNlBl+4.+ODD+Z.*EVEN1/3. 

O I F F = A 8 5 1   l A N S 1 - A N 5 2 1 / A t d S Z l  
I F l A N S Z  .EO. 0.01 GO TO 7 0 0  

m=2.*HN 
I F l O I F F  . L T .  EKHORJ GO TU 700 

AN S l=ANS 2 
AN52=H*LFNlAI+FNlBJ+4-*UDO+2.*liVENJ/3. 
OIFF=ABSl IANSl -ANS2) /ANS2)  

GO T J  5 5 0  
I F I D I F F  .LT-  ERKORJ GO TD 700 

SIMSI~=AN S 2  
RETUKN 
Et40  

I F ~ H N  .LT. 100.1 GO TO 200  

2 
1 

3 

OF 
4 
5 

TO, 6 
7 

9 
8 

10 

12 
11 

13 ~- 
14 

s 10 
15 

s 20 

S 40 
S 30 

S 60 
S 5 0  

s 7 0  
s 80 
s 100 
S 9 0  

s 120 
s 110 

S 140 
S 1 3 0  

S 150 
S 160 
S 170 

5 190 
s 1 8 0  

s 2 0 0  
5 210 
s 2 2 0  

S 2 4 0  
5 2 3 0  

5 2 6 0  
S 250 

S 2 7 0  
s 2 8 0  

S 290  
5 2 8 5  

S 300  
5 310 
S 320 
S 330 
S 340 
S 3 5 0  

S 3 7 0  
5 360 

S 3 8 0  
S 390  
5 4 0 0  

Nonzero  Magnetic  Field 

The  equations  used  in  evaluating  the  distribution  function  for  the  case of a finite 
magnetic  field are (25b) to  (25e), (26) and  (27).  The  flow  diagram  for  the  main  program 
(APERT) is given  in  figure 14. The  calculation of the  distribution  function  proceeds  via 
subroutines FNI and FNA. 

Subroutine FNI solves  the  relation 
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8 START 

P r i n t  
headings 

Ini t ia l ize 

Eead U R  

e Calculate V, 

No 

QV = QV + 0.1 

Yes 

I 
No 

Calculate Ff 

4 Store F' 
I I 

Figure 14 - Flow diagram - program APERT. 
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and is appropriate  when  the  value of vz is such  that  only  class Ia particles  can pass 
through  the  aperture. 

Subroutine FNA calculates eta times  the  transverse  distribution  function for the 
general  case  and is depicted  in  figure 15. 

<-> 

* Calculate 8 

1 
7 - 1  

I 

Figure 15. - Flow diagram  subroutine FNA. 
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Figure 16. - Flow diagram  subroutine XI, 

Figure 16 is a flow diagram  for  subroutine XI, which is a solution of the  integral 
used  in  obtaining  eta  (eq.  (25e)).  The  program  listings  follow. 
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C 
C COMPUTATII IN nF THE t F F t C T  OF A N   A P € k T U K E  ON A TWO TEHPERATJKE 

Y 10 
H 20 

C 
M 30  

C A YAGNFT  IC   F IELS I S  ASSUHEU  PERPENUICULAR  Ti l   THE  APERTURE  PLANE. 
H 40 

Y 6 0  
M 50 

M 70 
M 8 0  

Y 1 0 0  

M 1 2 0  

M 140 
Y 1 3 0  

I3N111) H 144 
H 1 4 2  

Y 1 5 0  

Y 1 6 1  
M 160 

H 1 7 0  

c MAXUFLL IAN o I s n l a u r I u N  FUNCTION. 

n 9 0  

Y 110 . 

C 

C R IS T H F   M A G N E T I C   F I k L D   I N   T E S L 4 .  
C THF N I I R W A L I Z E D   A P E H T d k t  L E N G T H = 4 7 Z O O + ~ + L / S O H T ( T Z l  

C T I  I S  T H F   A X I A L   T E M P E g A l U K k   I N  E.V. 
C 1 I S  THE A P E K T M F   L F N G T H   I N  METERS. 

C PWINT 0.JT HFAI I INGS  4ND SET COUFrTkK. 
C 

C 
KK=O 

10 W R I T F ( O . ~ ~ O I  
610 f 0 R M A T l l H 1 . 2 0 X . 4 3 H E ~ ~ € C T  UF APiRTLlRE ON O I S T R I B U T I O N  FJ\I,T 

k R I T F I 6 . 6 0 0 )  
600 0 FnRHATl   1H  .5X.2HUV.6X.9HDIST.  F l u -  . ~ X . ~ H L / R I ~ ~ X . ~ H L N . ~ ~ X * ~ H  

C 
C I N l T I A L 1 7 E  PKII(;dAN 4 N 0  SUPPLY  REUUI4EU  CONSTANTS. 
C 

1 1 2 X .   S H T P / T L / / / I  

R F A L   L N - L R  
CnMM'IN LN.Lk.TZT*.PI .RN.VZ 
P 1 = 3 . 1 4 1 2 9 3  
K K = K < + l  

C 
C INPUT  DATA  FOLLOUS. 
C 
C 

L R  I S  1HE LENGTH T U  K A O I U S ' R A T I U  U f  T H t  APERTURE. 
L N  I S  THF NOH.YALIZEU  APERTURE  LEhSTH. 

C 
C T 7 T P  I S  THE  R4TICl OF THE A X I A L  AN3  TRANSVERSE  TEMPERATJRES. 

500 FORMPTl3F10 .41  
k F A O I 5 . 5 0 O I L K ~ L N ; T Z T P  

T P T Z = l . / T 7 T P  
C 
C 

C 
C 

C 

C 
C 
C 

100 

200 

60 5 
30 0 

I 

€NO n F   I N P I J I   D A T A .   S T A K T  (IF C A L L t J L A l I L l N  OF O I S T R I B U T I O N  
FUNCTIOY. 

IcN I S  THt  NI IKMALIZEO  APFHTURF  RADIUS.  

KN=Z.*PI*LN+SORTl2.*TZTP)/LR 
D I H F N S I 3 N   D l S T F N I 5 1 J ~ O V V I 5 1 )  
nn ~ O O  J=I. 51 

a v = x . l /  10. 
XJ=J-1 

a v v l  J I =DV 
V Z = S J R T I U V l  

CHECK T 1 L E €  I S  V I  I S  G T  THAN  MIN  VALUE R O H O .  

IFIVI .:T. L N )  G J  Tn 100 
1 RN=;7N 
EXTFilNAL  FN i 
DIFF=O.O 

I F L R U  .GE. 5.) O I S T F ~ ~ J l ~ E X P l - O V l * S I M S N ~ O . ~ ~ 5 . ~ 4 ~ F N I ~ D I F F ~  
I F ( K N  . L T .  5.) D I S T F N I J ) = t X P I - U V ~ * S I M S N ( J . O , R N . 4 . F N I . D I F F I  

CnNTINlJE 
FXTEi lNAL  FNA 

c.0 ~1 700 

OIFF=O,O 
D I S T F N l J l ~ k X P l - 3 V ~ * S I M S N l O ~ O ~ 5 . ~ ~ ~ ~ N A ~ ~ I F F ~  
C(IN T I NtJE 

W R I T F 1 6 . h O 5 1   U V V I N I . D I S l F N ( N 1   . L k r L N . t t N . T P T Z  
F I l R M 4 J I l H   . F 8 . 4 . 5 t 1 4 . 4 1  
CLINT IhlllF 

STnP 
END 

nn ~LIO N-I.  51 

IFIK< .LT. 1 7 5 1  ;n TO I O  

RN. 

M 180 
Y 1 9 0  
Y 2 3 0  
Y 2 1 0  
Y 2 2 0  
M 2 3 0  
Y 2 4 0  

'4 2 6 0  
Y 2 5 0  

M 2 7 0  
M 2 8 0  

M 3 0 0  
'4 2 9 0  

Y 3 1 0  
N 3 2 0  
Y 330  
H 3 4 0  
M 3 5 0  
M 3 6 0  
Y 3 7 0  
M 3 8 0  

1 4 0 0  
Y 3 9 0  

Y 4 1 0  
Y 4 2 0  
'4 4 3 0  
M 4 4 0  

M 4 6 0  
Y 4 5 0  

M 4 7 0  
Y 4 8 0  
Y 4 9 0  
Y 5 0 0  
Y 5 0 5  
Y 510 
Y 5 1 5  

W 5 3 0  
M 5 2 0  

M 5 4 0  
Y 5 4 5  
Y 5 5 0  
Y 5 6 0  
M 600 

W 7 2 0  
Y 7 1 0  

M 7 3 0  
Y 7 4 0  

Y 7 6 0  
Y 7 5 0  
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C 
C T H I S , F I J Y C T l f l N  15 THE T R P N S V E R S E   U I S T H I O U T I O N   F U N C T I O N   T I M E S  
C ETA I-nR C L 4 S S  1A PAaTICLES.  
c 

COHHlN  LN.LR.TZTP.PI.RN.VZ 
FLJNCT IllY F N  I L  VT I 

REAL  LN.LR 
I F I V T  .GT. 7.01 GO TU 10 
GLl Til  LO 

60 TI 1110 

F N I = V T * I  l~-R~l*ll.-RGJ*EXPI-VT*VT/2~I 

RFTLIdN 
EN n 

10 FNI=O.O 

70 RG=VT/RY 

130 C f l N T I N l l E  

C 
C FIJNCTIOU  SIMSNIAIS.N.FN.DIFFI 
c 
c S I H P S l N  1 / 3  K l lLE  INTEGRATION. 

C SIGNIF1I ;ANT  F IGI IRES  THE ANSWER ,AN t lE   EXPECTED  TO BE CORRECr 
C AN0 1 0 0 C l ) I F F  I S  THE PEHLENT  O lFFEHtNCE  BETWEEN  THE  LAST rbd3 

c 
C C.flYPIITEI)  VPLLJES O F  THt I NTEZRAL. 

c 
C 
c 

FXTEdNAL F d  

C 
I)IFF=U.O 

c 
ANS=SIM5NIA.H.N.FN.OIFF) 

tLlNr.TIhlV  SIMSNIA.bINIFN.OIFF) 
EXTEZNAL  FN 
K = l l  
HN=IO. 
FRRnW=l. 
011 100 J =  1. N 

c A I S  THE L I W E A  L I M I T .  tl THE U P P ~ H  LIMIT , N GIVES THE NJMBER 

THF  CALL SEOLIENUSF IS 

700 H=l d - P l / H N  
100 EHKI I&=F2Rf lH / lO .  

non-0.0 
FVFN=O.O 

NR=HN-2. 
NA=HV-I. 

oil wL) < 4 = 1 . . ~ 4 . ?  

X=A+r(l(A+H 
XKA=<A 

300 [ J D f l = l l l l I t F N I  X J  

XKR=r(R 

400 EVEN=EVEN+FNlX I  
X=A+XKRt H 

K=K+I  
I F I K  .G1. 0 1  GI1 T O  5 0 0  

A ~ S 1 = H + I F ~ l A I + F N I b I + 4 . * 0 0 0 + 2 . ~ E V ~ N I / 3 .  
hN=?.*HV 
GO T l  700 

K = K + l  
A N S ? = H ~ I F N l A I + F N I R J + 4 . * 0 0 0 + 2 . * t V t N ~ / 3 .  
I ) IFF=Ar ) .S . I   (AhS l -AUS2J /ANSZJ  
I F I O I F F  .LT. ERHCIRJ GO TO 700  

I F ( H Y  . L T .  100.1 GO TU 200 

A ~ S ? = H * I F N I A l + F N I a l + 4 . + O O D + 2 . * E V E N I / 3 .  
O I F F = A l i S I   I A N S l - A Y S Z I / A N S Z l  

1111 4 n o  < H = z . \ ~ H . z  

50u  I F I K  .GT. 1 1  Gfl  T O  600 

5 5 0  HN=7,*HV 

.6O0  ANSI=ANS? 

IFIDIFF .L r .  E H R ~ R J  r,n TO 700  

7 0 0  SIMSY=ANS7 
R E T U X N  
FNII  

611 T l  550 

A 10 
A 20 
A 30  
A 40 
A 5 0  
A 60 
A 70 
A 7 2  
A 1 3  
A 74 
A 7 5  
A 8 0  
A 9 0  
A 9 5  
A 100 
A 110 

1 
2 

4 
3 

OF 5 
TO. 6 

7 
8 
9 

1 1  
10 

1 3  
1 2  

14 
15 

s 2 0  
5 10 

5 4 0  
S 30  

5 6 0  
S 5 0  

5 80 
5 70 

S 90 
s 100 
s 110 
s 120 
S 1 3 0  
5 140 
S 1 5 0  
S 160 
5 170 
5 180 
S 190 
s 200 

5 2 2 0  
s 210 

S 240 
S 230 

5 260 
s 2 5 0  

s 280 
5 2 7 0  

S 290 
5 300 
5 310 
S 320 
S 330  
5 340  
S 350  
S 3 6 0  
S 370  
S 380  
S 390 
S 400 
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C 
C T H I S   F U N C T I O N  IS THE T R A N S V E R S E   D I S T H I B U T I O N   F U N C T I O N   T I M E S  

C REOUIRED. 
C ETA  FOR  ALL  PARTICLES WHOSE A X 1 4 L   V E L O C I T Y   E X C E E D S   T H E  Y I Y I ' 4 J Y  

C 

C ROL I S  THE LCJWER L I M I T  OF I N T E G ? A T I L I h   H i E N  RG .GE. 1. 
C ROl l  I S  THE  UPPE? L I r l T  UF 1NTE;KATILIN. 

C 

C O H H l N  LN.LR.TZTP.PI.RN.VZ 
FUNCT ION F N A I   V T )  

REAL L;U.LR 
EXTERNAL X I  
RG=VT/KN 
I F I R G  .EO. 0.0) SO TO 3 5  
GI1 T l  40 

G[I T3  100 

I F I T H E T A  .GT. 2.+PI)  THETA=2.*PI 

I F I R C  .LT. 1.1 G J  T O  30 
I F l T H E T 4  .GT.  2 . * h R S I N i l . / R G ) )  G O  TO 10 

I F I R O B  .LE. 0.0) GO T O  10 
GO Ta 20 

35 F T A = l -  

40 THFTA=P.*PI*LN/VZ 

25 ROA=dG*CflSI  THETA/Z.) 

30 ROB=1.-3G*RG*SINl  THETA/Z.)*SI  NITHETA/2. 1 

10 ETA=0.0 

20 RORA=SC)R T I  ROB ) 
Gn 11 l oo  

ROU=UOA+HO.BA 
RflL=POA-ROBA 

0 1 F l R 3  .LT. 1.1 E T A = X I I V T 1 R O U . R N ) / P I t . 5  
1 +THETA* (   I . -RG)* i l . -RG) / IZ . *P I )  

I F i R G   - L E -  1.) E T A = l X I i V T ~ R O U . ~ N I - X I I V T I R O L . R N ) ) / p ~  
I F I E T A  . L T .  0.0) ETA=O.O 
I F I E T A  .GT. 1.) E T A = l .  

L O O  F N A = V T * € T A * E X P I - V T * V T / 2 - )  
RFTURN 
END 

B 10 

B 30 
B 20 

B 40 
B 5 0  

B 70 
B 60 

B 3 3  
B 100 
B 110 
B 120 

B 140 
B 130 

B I42 
B 141 

B 144 
B 143 

B 170  
B 160 

8 200 
8 2 0 2  
B 2 0 4  
8 2 1 0  

B 230 
B 2 2 0  

B 240 
B 2 5 0  
B 2 6 0  
B 2 7 0  
8 2 8 0  
B 300 
B 301 
B 310 
B 3 2 0  
B 3 2 5  

R 3 5 0  
8 340 

8 360 

7 0  

45 

16 

60 
50 

F l l N C T l L J V   X I I V T . R O I ~ N )  
I 2 0  
I 10 

VT I S  THE V L J R M A L I ~ E ~   T R 4 N S V E R S E   V E L O C I T Y .  RO THE L I M I T  J F  
T H I S   F U U C T I U \ I   G I V E S   T H E   V A L U E  OF TtiE I N T E G R A L  USE0 T O  CALCJLATE  ETA I 30 

INTFGRATI I IN .   TEETA  THE  UKBITAL   ANGLE.  AND RN  THE  NORMALIZED 
I 40 

APERrURE R4LllLJS. I 5 0  
I 50  

CflMMlN  LN.LR.TLTP.PI.RN.VZ 
I 7 0  

R € A L   L U - L R  
I 80 

RG=VT/HV 
I 90  

I F i R G  - E J .  0.0) GO TO 50 
I 100 
I 110 

HGS=. (G*KG I 1 2 0  
A = I R l * K ~ - K G S - l . ) / l 2 . * R G )  
I P l A  .LT .  0.0) X I A = - A K S I N i - 4 )  

I 130 
I 140 

1 F l A  . G E .  1.1 X I 4 = P I / 2 .  
l F l A  .GE. 0.0) X I A = A R S I N I A )  

I 150 

H=IRl*RO+HGS-I.)/l2.*RO*RG) 
I 160 

I F I R  .GE. 1 . )  XIB=O.O 
I 2 3 0  
I 260 

I F I - R   - L E ,  1.) XIB=HO*RO+PI 
I F I A R S I R )  .Lr. 1.) XIB=HO*RO*AKCOSiB l  

I 2 7 0  

C = - R J * * 4 / 4 . + R t l + R J * i R ~ S + l ~ 1 / 2 ~ - i l ~ ~ R ~ S ) ~ * 2 / 4 ~  
I 2 8 0  
I 340 

I F I C  .LT.  0.0) C=O.O I 3 5 5  
X I C = S O R T I C )  
THETA-Z.*PI*LN/VL 

I 3 6 0  
I 380 

I F I T H F T A  . G 1 .  2.*PI 1 THETA=Z.*PI 
X l = X I A + X I H - ~ I C - T i t T A * R 0 / 2 .  

I 3 9 0  

Gn 11 60 
I 420 
I 430 

CI lNT  INUE I 450 
RFTU4N 
EN 0 

I 460 
I 4 7 0  

xI=o,n I 440 
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